Approximating the Real Structured Stability Radius with Frobenius-Norm Bounded Perturbations
نویسندگان
چکیده
منابع مشابه
Approximating the Real Structured Stability Radius with Frobenius-Norm Bounded Perturbations
We propose a fast method to approximate the real stability radius of a linear dynamical system with output feedback, where the perturbations are restricted to be real valued and bounded with respect to the Frobenius norm. Our work builds on a number of scalable algorithms that have been proposed in recent years, ranging from methods that approximate the complex or real pseudospectral abscissa a...
متن کاملSpectral Radii of Fixed Frobenius Norm Perturbations of Nonnegative Matrices
Let A be an n × n nonnegative matrix. In this paper we consider the problems of maximizing the spectral radii of (i) A + X and (ii) A + D, where X is a real n × n matrix whose Frobenius norm is restricted to be 1 and where D is as X but is further constrained to be a diagonal matrix. For both problems the maximums occur at nonnegative X and D, and we use tools of nonnegative matrices, most nota...
متن کاملApproximating real stability radii
The stability radius of an n×n matrix A (or distance to instability) is a well-known measure of robustness of stability of the linear stable dynamical system ẋ = Ax. Such a distance is commonly measured either in the 2-norm or in the Frobenius norm. Even if the matrix A is real, the distance to instability is most often considered with respect to complex valued matrices (in such case the two no...
متن کاملOn Robust Stability with Structured Time-Invariant Perturbations
We consider the problem of robust stability for uncertain systems described in terms of multiple scalar structured time-invariant perturbations, which are norm bounded. The issue we address is the role that the type of perturbation norm plays in the robust stability conditions. To this end, the L p-induced norms (for 1 p 1) on the perturbations are considered, and some simple relations between ...
متن کاملThe Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2017
ISSN: 0895-4798,1095-7162
DOI: 10.1137/16m1110169